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Theory of Atomic Spectral Emission Intensity 
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The theoretical derivation of a new spectral line intensity formula for atomic 
radiative emission is presented. The theory is based on first principles of 
quantum physics, electrodynamics, and statistical physics. Quantum rules lead 
to revision of the conventional principle of local thermal equilibrium of matter 
and radiation. Study of electrodynamics suggests absence of spectral emission 
from fractions of the numbers of atoms and ions in a plasma due to radiative 
inhibition caused by electromagnetic force fields. Statistical probability methods 
are extended by the statement: A macroscopic physical system develops in the 
most probable of all conceivable ways consistent with the constraining condi- 
tions for the system. The crucial role of statistical physics in transforming 
quantum logic into common sense logic is stressed. The theory is strongly 
supported by experimental evidence. 

1. I N T R O D U C T I O N  

The fundamental principles of  classical statistical physics were mainly 
established in works by Maxwell, Boltzmann, and Gibbs. In considering 
the kinetic theory of  gases, Maxwell, in 1859, introduced the statistical 
concept o f  distribution function. Boltzmann, in 1872, used the probability 
measure of  distributions to give a statistical interpretation of  entropy and 
the second law of  thermodynamics. Credit for authorship of  statistical 
ensemble theory is given to Gibbs in 1902. 

The embryo of quantum statistical physics was created when Planck in 
1900 presented his blackbody radiation formula. Einstein in 1906 showed 
that a necessary ingredient of  Planck's theory was the existence of light 
quanta  with energy hv, and in 1908 Einstein's light quanta successfully 
explained the photoelectric effect (Kuhn,  1978). 

Bohr's 1915 theory of  the a tom postulated discrete internal energy 
levels, and spectral lines were explained by light-quantum emissions with 
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energy equal to the energy loss of the atom making jumps from higher to 
lower energy levels. Einstein's light-quantum hypothesis had thus been 
linked to a quantum hypothesis of the atom. This link was very soon used 
by Einstein in 1916 to give what seems to be the very first description of a 
macroscopic physical system in a quantum statistical physics formulation. 

In this work Einstein (1917) introduced his famous radiative emission 
and absorption coefficients A and B, respectively, of an atom. Only the 
internal atomic degree of freedom over the range of discrete energy values 
an was considered and the atoms of a gaseous sample were assumed to 
populate the levels n in proportion to Wn =Pn exp(-~,,/kT) with Pn a 
statistical weight. This (Boltzmann) distribution was referred to as the 
farthest-reaching generalization of Maxwell's velocity distribution law. (We 
shall throughout use the term "atom" for a gaseous constituent instead of 
Einstein's "molecule." The A and B coefficients were used to write down 
the probability of elementary emission and absorption processes for "radi- 
ation bundles," i.e., photons. 

In particular, Einstein considered atomic jumps between two energy 
levels with accompanying emission or absorption of photons with energy hv 
equal to the energy difference of the two atomic levels. It was assumed that 
in a macroscopic system the total number of each kind of radiative process 
was simply equal to the product of the probability of each particular 
elementary process and the population number of the initial atomic level. 
Imposing equilibrium demanded equality between the total number of 
upgoing photon-absorbing atomic jumps and of downgoing photon-emit- 
ring atomic jumps. This led to the photons being distributed according to 
Planck's fornaula--in Einstein's somewhat emotional phrasing, "es ergab 
sich auf diesem Wege die Plancksche Formel in verbliiffend einfacher und 
allgemeiner Weise" (in this way the Planck formula emerged in an amaz- 
ingly simple and general manner). 

Einstein obtained his coefficients by reasoning in terms of classical 
electrodynamics. The correctness of  the coefficients was first strictly verified 
by Dirac in the late 1920s in his quantum mechanics formulation of 
radiation theory (Dirac, 1930). The statement of the relationship of these 
fundamental atomic constants more than 10 years before this relationship 
was actually understood is considered one of Einstein's great achievements. 

Einstein's generalization of  the Maxwell distribution into the so-called 
BolL~nann distribution of atoms over discrete energy levels is most fre- 
quently referred to as the condition for local thermal equilibrium (LTE). 
This concept has been used by spectroscopists ever since the 1920s as the 
basis of an intensity formula for optical emission from spectroscopic 
samples. The intensity of an atomic emission line is assumed to be 
proportional to the Einstein A coefficient of the emission and the Boltz- 
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mann population number of the upper level of the pertaining atomic 
transition (Herzberg, 1944). This is identical to one of Einstein's (1917) 
original assumptions and application of Einstein's absorption rule in the 
limit of complete reabsorption of the radiation emitted according to the 
intensity formula leads, of course, to the Einstein equilibrium of matter and 
Planck radiation. 

Einstein's original formulation of quantum statistical physics of 
gaseous matter in interaction with radiation was thus adopted as a basic 
principle of optical emission spectroscopy. We have noted that his principle 
was formulated quite long before the advent of quantum mechanics. It 
is also important to note that although Maxwell's statistical distribution 
was invoked conceptually, Boltzmann's fundamental probability principle 
for determining the distributions and their time development actually 
occurring in nature was not considered in particular. All this renders ample 
reason for scrutinizing the theory of optical emission from a spectroscopic 
sample. 

The results of such a scrutiny will be presented in this paper. It turns 
out that fundamental principles of quantum mechanics and quantum field 
theory for microphysics, together with averaging procedures and maximum 
probability principles of quantum statistical distributions for macrophysics, 
suggest the abandonment of the principle of LTE. Arguments based on the 
concept of quantum mechanical state do not imply the semiclassically 
founded Einstein equilibrium. 

2. MICROSCOPIC AND MACROSCOPIC LAWS OF PHYSICS 

This section will be devoted to a conceptual discussion. Some appar- 
ently vague points will be clarified in the subsequent section. 

We have learnt that the special logic of quantum mechanics applies to 
the microscopic world. We should also realize that this special logic need 
not be understood directly in macroscopic logical terms. What we need is 
a logical bridge to translate the microscopic laws into the laws of events in 
the macroscopic world. The apparent controversy between quantum me- 
chanics and common sense causes debates from time to time. I think much 
would be gained if in such debates it could be agreed that the microscopic 
and macroscopic worlds considered separately are described by incompat- 
ible logical systems. The main topic of this paper will furnish a very good 
example of the way the microscopic quantum logic is translated into 
macroscopic "common sense" logic. 

A macroscopic physical system may be thought of as being an 
assembly of microscopic subsystems. A subsystem is then composed of a 
basic microscopic constituent (particle) in interaction with the rest of the 
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macroscopic system via microscopic fields of force. This microphysical 
system is supposed to be described by quantum mechanics. 

We can solve (at least in principle) the quantum mechanical problem 
posed by a basic microsystem and thus determine all its possible states. 
Since we have a system with interaction, the state in general is a quantum 
mechanical superposition of all possible states. The basic physicalproper- 
ties of this microsystem determine a priori conditions for the construction 
of assemblies that may represent the macroscopic system in a statistical 
physics description. 

We thus form all assemblies of subsystems taking care of the mi- 
crophysical a priori conditions and the constraints of the macroscopic 
physical system. These assemblies constitute a statistical ensemble. The 
actual macroscopic state is represented by an assembly that is found by 
averaging over the ensemble. This representative assembly must, following 
Boltzmann, be chosen as being the most probable assembly of all those 
consistent with the macroscopic constraints. 

Our basic microscopic constituent is described by a superposition of 
base states that span the space of the possible quantum mechanical states. 
By a fundamental postulate of quantum mechanics the superposition 
defines the probability of observing the constituent in each base state. This 
is the kernel of the microscopic logic; the constituent is simultaneously in 
many possible states, but is found in one state upon observation. 

The translation of this into the macroscopic logic is achieved in 
the process of forming the representative assembly for the macroscopic 
system. A priori we have the microscopic base states at our disposal in 
determining properties of the macroscopic system. For instance, we may 
ask how many basic constituents there are on an average in a particular 
base state. This is a meaningful question since every measurement of this 
number provides a definite result and the average number of constituents 
is thereby determined (this might presuppose some kind of stationarity 
condition). 

The results of measurements of all average macroscopic quantities 
should, of course, agree with the results obtained theoretically for the 
representative assembly. When this requirement of consistency is fulfilled 
we can say that the representative assembly expresses physics from the view 
of quantum mechanics as well as classical physics. From the classical, 
macroscopic view the basic constituents are on an average distributed in 
definite numbers over base states. From the microscopic, quantum mechan- 
ical view every basic constituent is occupying every base state according to 
a probability distribution. The ensemble concept of statistical physics thus 
provides complementary logical descriptions of macroscopic systems in 
terms of both classical physics and quantum mechanics. 
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3. MICRO-  A N D  M A C R O P H Y S I C S  OF G A S E O U S  S A M P L E  

Let us now put the discussion of the preceding section into a more 
concrete form. We shall then consider a macroscopic sample of matter in 
the gaseous state. In general the constituents of such a sample are 
molecules, atoms, and ions. We shall confine the discussion to a subsample 
consisting of one kind of constituent which we shall speak of as "atoms." 
Our results will apply to any one of such subsamples. From the way we 
treat this problem it will be obvious how to obtain a description of the 
whole sample. 

Our sample is supposed to be in a stationary state. Energy is pumped 
into the sample at a steady rate and this energy is emitted from the sample 
in the form of electromagnetic radiation, photons. Our sample may thus be 
a spectral lamp or any other steadily shining gaseous body. 

Let us then consider the physics of one of the atoms in the macro- 
scopic sample. We shall presuppose that the action by the macroscopic 
environment on our atom is purely electromagnetic. Then our object of 
study is a microsystem consisting of one atom in an external electromag- 
netic field. This will be the basis of a description of the macroscopic sample 
as an assembly of such microsystems. 

The main subject of this paper is intensity of spectral lines. Spectral 
line emission occurs when the atom makes jumps from higher to lower 
internal energy eigenstates. We may therefore simply consider the internal 
states of the atom only, neglecting kinematic effects resulting from motion 
of the atom. The interaction of the atom with the external field may then 
be described by the internal atomic electron four-current (electric current 
and charge) coupling with the external electromagnetic field. Details of this 
description in the framework of quantum electrodynamics are studied in 
Yngstrrm (1988). 

The electromagnetic field can always be split into two separate parts in 
a relativistically covariant manner. These are a pure radiation field (pho- 
tons) and a generalized Coulomb field (electric and magnetic fields of 
force). The well-known radiative transitions of the atom are caused by the 
coupling of the atomic electrons with the radiation field. 

The generalized Coulomb interaction is described by the coupling of 
the atomic electron four-current with the four-currents of the sources of the 
external field. When this coupling is weak the internal atomic energy 
eigenstates are perturbed by the well-known Zeeman and Stark effects. In 
case the coupling becomes strong one may think of the atom as having 
formed compound states with ambient particles (electrons, ions, and 
atoms). This picture of the Coulomb interaction appears perhaps best in 
collisional processes. In contrast to photon interaction, the Coulomb 
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interaction is not instantaneous. In inelastic collisions the atom is carried 
from one energy eigenstate to another in some time interval. During this 
time the atom passes through intermediate transitional states with unob- 
servable internal energy. 

All this means that the spectral emission from the atom is quenched. 
Since the sum of all transition probabilities from a state is unity, the 
generalized Coulomb force transitions compete with the spectral transi- 
tions. The unit value of the total sum of spectral transition probabilities 
from an internal energy eigenstate of the atom in a pure radiational 
external field is decreased by the value of the sum of Coulomb transition 
probabilities in a general external electromagnetic field. 

Quenching of spectral emission intensity has been observed in various 
plasma experiments. In a recent report (Chung et al., 1989) references to 
contemporary and earlier work on quenching phenomena are discussed. In 
most papers quenching is attributed to changing spontaneous emission 
probability rate. In this paper quenching is claimed to result from competi- 
tion between transition modes. The radiative rates of direct transitions 
between atomic discrete states are overall quenched by the Coulomb forces 
in comparison to the transition rates of the free atom in a pure radiation 
field. The quenching may be compensated for some transitions by resonant 
Coulomb force enhancement of radiative transition rates. 

Photon emission may occur during the Coulomb transitions. This 
emission is of higher order than the spectral emission. Emission from 
intermediate transitional atomic states should thus be quite weak and one 
may hence also speak of these states as being nonradiative. 

The Coulomb interaction thus introduces very important quantum 
mechanical a priori conditions for the construction of an assembly for the 
representation of the macroscopic sample. We shall now proceed with this 
construction and see how these microscopic conditions will be expressed in 
macroscopic terms. 

The principal features of the atom in the microsystem can be stated 
symbolically in terms of a wave function �9 describing a momentary 
internal atomic state 

where q~, are orthonormal discrete energy eigenfunctions and ~k symbolizes 
transitional states, ff and �9 are not defined with mathematical rigor (it may 
not be possible to define them in ordinary Hilbert space), but for the 
benefit of physical interpretation we treat them formally as normalized 
wave functions with ~k orthogonal to the (o's. We thus have 

(r r -- E Ic. I = + Ib[ 2 = 1 (2) 
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This equation is interpreted by saying that [c,t 2 is the probability of 
observing the atom in an eigenstate of energy e,. The probability of 
observing the atom having definite energy is ~ [c, 12, which by equation (2) 
satisfies 

E ]Cnl2 = 1 - Ibl= -<- 1 ( 3 )  

Transitions between the states r are coupled with emission and absorption 
of photons. In neglecting possible but very unlikely radiative transitions 
within the "state" ~b we can interpret equation (3) as stating that the 
probability of the atom being observed in a radiative state is smaller than 
unity. 

Suppose we have N atoms in the macroscopic sample. The momentary 
internal state of each atom is supposed to be given formally by a definite 
O. At every instant we thus imagine that the sample is an assembly of N 
atoms described microscopically by a set of O's. A large number of instants 
in a certain time interval defines an ensemble of such assemblies described 
by a "superset" of O's. The average values of CnC ~ and lb[ 2 for each atom 
can then in principle be determined from this superset. 

The sample is assumed to be in a stationary state. By this is meant that 
the macroscopic properties of the sample are determined by well-defined 
time-average measurements. The time averaging is then done over a time 
interval which is long in comparison to the characteristic periods of the 
fluctuations of all macroscopic quantities needed for a complete macro- 
scopic description of the sample. 

The atoms are moving around randomly in the gaseous sample. This 
suggests that they are all coupled with the same external field on the time 
average discussed in the preceding paragraph. This suggestion could be 
called quasimacroscopic since it involves neglect of the quantum mechani- 
cal uncertainty. This uncertainty might show up in different values for 
ensemble superset averages of cnc* and [b[ 2 of different atoms. All this, 
however, implies that well-defined mean values of these ensemble averages 
exist when the ensemble is constructed in accordance with the macroscopic 
conditions for time averaging. 

In this way we eventually construct a statistical density matrix w,m and 
a statistical density scalar 1 -  e -~ as the mean values of the ensemble 
averages of c,c* and Ib 12, respectively. The condition expressed by equation 
(3) can now be written 

Wnn = Tr w = e-~ (4) 

where, of course, ~ > 0. 
The representative assembly for our macroscopic gaseous sample can 

now be described as follows. The assembly of N atoms is split into two 
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distinct assemblies. One of these is composed of NR atoms which have 
discrete internal energy values. These atoms can emit and absorb photons 
by making jumps between the energy levels. The other distinct assembly is 
formed by Nv atoms in intermediate transitional states. The radiative NR 
assembly gives rise to an atomic emission line spectrum, while the N v  

atoms may be termed nonradiative in disregard of possible interactions 
with emission of a weak continuous spectral background. We then have 

N = NR + Nv (5) 

N n = N e  -~' (6) 

NR = E N j  (7) 
J 

with Nj being the average population number of the energy level ej. These 
relations comprise a macroscopic picture of our sample. The distribution 
{AT/} is in principle defined by the result of experiments designed to observe 
such a distribution. In other words, the relations (5-7) should be consid- 
ered statements of interpreting experimental results. 

This interpretation is the legitimate basis for the use of concepts like 
number of atoms on a discrete energy level, number of atoms jumping 
between such levels, and number of particles in nonradiative intermediate 
states. As pointed out in the preceding context, the microscopic "real" 
picture is the quantum mechanical one stating that every atom is in all its 
possible states according to a probability distribution. 

The relations (5)-(7) will thus be used as a starting point for the 
formulation in terms of statistical physics to describe our macroscopic 
sample of gaseous matter. We shall devote the next section to the study of 
pure radiative processes in order to find microscopic conditions that might 
impose constraints on the radiative distribution {N/}. In this way the 
starting point for the statistical physics description will be assumed to be 
completely settled. 

4. ATOM IN RADIATION FIELD 

Let us now consider the interaction of the atom with the radiation field 
in our microsystem. We shall then only consider the discrete quasifree 
states of the atom, i.e., the possible effect of the Coulomb forces is limited 
to splitting of discrete levels and influencing radiative transition rates 
between such levels. 

We assume that there exists a spontaneous transition rate M~ for the 
downgoing jump ]i) ~ Lf) under the emission of a photon of energy hv  in 
the initial state. As is well known, the rate of the above transition is 
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Pfi = (n + 1)Mfi (8) 

when there are n photons hv in the initial state. 
An upgoing jump Lf)-~ [i) under absorption of a photon hv is 

governed by a rate given by Me times the number of photons initially 
present. 

The two discrete levels are assumed to have statistical weights P~ and 
Pf, respectively. According to standard radiation theory (Herzberg, 1944), 
we have 

PiM~ = PfMr (9) 

We recall that our macroscopic sample is in a stationary state, so that the 
quantities P and M of our microscopic system may be looked upon as 
representative mean values of the assembly of "one-atom" microsystems 
constituting the macroscopic physical system. Again we state that the 
average influence of the Coulomb forces is assumed to be included in the 
microscopic quantities ~, P, and M. In this way we may argue that we can 
use a formulation analogous to the standard theory of a single atom in a 
pure radiation field when treating radiative jumps of the quasifree atom 
between its discrete energy levels in the microsystem. 

Let us assume that the microsystem is initially in the atomic eigenstate 
[i) with n photons hr. The transition probability per unit time to the state 
If)  with n + 1 photons is given by (8). 

Since we have n + 1 photons with the state If) the transition rate back 
to state li) with n photons will be given by 

Combining (8)-(10) yields 

P,f = (n + 1)Me (10) 

Pf 

Since the lifetime of a level is equal to the inverse of the rate of transition 
away from the level, we see from equation (11) that the ratio of the 
lifetimes equals the ratio of the corresponding statistical weights. This 
means that the probability of observing the atom in one of its discrete 
levels is simply proportional to the statistical weight of the level. 

Performing this analysis for all pairs of levels connected by direct 
radiative transitions yields the important result that the atom is in interac- 
tion equilibrium with any radiation field when its radiative state is a 
superposition of the discrete energy eigenstates weighted according to the 
statistical weights of corresponding energy levels. 
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Let us now see how Einstein's (1917) result is obtained in our 
framework. The atom is assumed to obey the Maxwell-Boltzmann relative 
probability distribution 

Wk = Pk e --~k/kr (12) 

in a constant radiation field, i.e., the energy distribution of photons is fixed. 
In our notation this means that equation (10) is changed into 

P~f = nM~f (13) 

which together with (8) and (9) are identical to Einstein's original relations 
for the A and B coefficients. Einstein's equilibrium condition is now 
expressed by the relation 

WiP~ = WyPr (14) 

which is claimed to express the equality of probability rates of upgoing and 
downgoing atomic transitions. 

Combining all these equations (8), (9), (12)-(14) yields 

1 1 
n - -  e(~ - ~ f  ) / k T  _ 1 e h v / k T  - -  1 

which is Planck's radiation formula. After the assumption of the general- 
ized Maxwell-Boltzmann probability distribution for the atom over inter- 
nal energy levels this "amazing" Einstein result thus appears as a 
consequence of neglecting the influence of one photon. 

By employing the concept of quantum mechanical state to our mi- 
crosystem we have found that the probability of observing the atom in a 
discrete eigenstate of energy is proportional to the statistical weight of the 
eigenstate. This microscopic a priori condition then suggests that the 
assembly representing our macroscopic sample can be described macro- 
scopically by 

Nj = PjNR (15) 

with ~ / P j  = 1. Equation (15) then provides together with equations (5)-  
(7) the basis for a statistical physics description of our sample. In the next 
section we shall use standard combinatorial methods to connect these 
relations to thermodynamic quantities and determine the value of the 
constant a. 

5. THERMODYNAMICS OF STATIONARY GASEOUS SAMPLE 

The macroscopic properties of the sample under study were stated in 
Section 3. We consider a subsample of one kind of atom. Energy is 
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conveyed steadily to these atoms by an external agent. This causes sponta- 
neous emission of spectral radiation at a constant rate from the radiatively 
active atoms. For convenience we may think of a typical experiment in 
optical emission spectroscopy--a spectral lamp is shining steadily and the 
intensities of spectral lines are measured. 

We consider only the degree of freedom defined by the internal 
(electron) states of the atom. With respect to this degree of freedom the 
atoms have total internal energy E and entropy S. We have 

S = E/T  + const (16) 

and (16) will obviously be the one and only possible thermodynamic 
relation in terms of internal atomic quantities. The electron temperature T 
of the atom is defined by (16). 

Our sample consists of a fixed number N of atoms. By equation (7) 
these are split into two distinct populations Nv and NR. The NR atoms emit 
the observed spectral lines. A necessary condition for the steadiness of the 
spectral intensity is the macroscopic constraint 

NR = X Nj = const (17a) 
J 

Since N is fixed, we then also have, by (5), 

Nv = const (17b) 

The steady state of our sample implies that the internal energy is constant. 
We then have the auxiliary constraints 

Njej = const (18a) 
J 

and 

Nvev = const (18b) 

In (18b) we have introduced the average energy ~v of the nonradiative 
atoms Nv. We shall also introduce the average energy ~ of the radiative 
atoms NR by the relation 

NR~ = ~ Nj~j (19) 
J 

Let us then determine the distribution {Nj, Nv} which is most probable 
under the  constraints, i.e., find the maximum of entropy when (17) and 
(18) are satisfied. The radiative atoms can be selected in 



1490 Yngstr6m 

ways from the total number of N atoms. These NR atoms can be distributed 
in NR! I-L 1/Nj! ways over the levels ej. 

In this last combinatorial the division by Nj! is motivated by the fact 
that a permutation of particle labels does not change the physical state. 

The a priori probability for an atom of the set NR to Occupy ej is Pj. 
Hence the a priori probability for Nj atoms to occupy ej will be P~z These 
numbers are then the probabilities by which each way of distribution must 
be weighted in order to obtain the expression for the probability of the 
distribution. 

All this leads to the following expression for the probability W of a 
distribution of our atoms: 

where C is a normalization constant and the relation (5), N = NR + Nv, 
has been used. The Stirling formula lnX! = X lnX/e for factorials when 
X >> 1 applied to the preceding expression yields 

lnW Nv ln ~ E N+. N/ = - - ,' In ~ffj+. + I n C  ( 2 0 )  

According to Boltzmann this is connected to entropy S by 

S = k lnW (21) 

The macroscopic state of the physical system is by Boltzmann's principle 
the most probable of all conceivable states. This is the state with maximum 
entropy. We thus determine the maximum of In W by considering the result 
of variations 6N, fNj, and fNv with gin = ~ fNj + fNv. We get from 
equation (20) 

Nv Nj 
61nW = - r N v  In ~ -  - ~ aN/In (22) 

+ NPj 

A second variation shows that 6 qn W < 0, which means that any extremum 
value of lnW is a maximum. By putting 61nW = 0 in (22) we thus obtain 
the condition for maximum of entropy as defined by (21), 

fNvln-NN + ~. (23) 

Our constraints (17) and (18) yield the subsidiary conditions ~jfNg = O, 
Yo fNjaj = 0, and fNv = 0 for the variations of (23). 
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Introducing undetermined Lagrange multipliers 7, e, and x, we obtain 
the solution of (23), compatible with the constraints, from 

Nv Nj 
- 6 N v  ln -~- --  E ln~-~j = 5Nv7 + ~ + ~jx) (24) 

From equation (21) we have 5 S = k 6 1 n W  and from equation (16) 
6S = 6E/T. Hence, 

6E = kT  61nW (25) 

Equations (22), (24), and (25) are valid for arbitrary variations from the 
steady state at entropy maximum. Let us now limit the variations by 
imposing the conditions 5g = 5gv = 0. This brings eventually constraint 
(18b) into proper consideration. 

The average energy quantities gv and g were defined in (18b) and (19). 
The total energy variation 5E may thus be expressed by 

6E = 6Nvgv + 5NRg (26) 

o r  

6E = 6Nvgv + Z 6Nj~j (27) 
J 

In standard formulations of thermodynamics there is usually a term 6N# 
that contributes to the energy variation 5E by the chemical potential #. 
Such a potential is not defined in the present formulation since we consider 
only internal atomic degrees of freedom. On the other hand, we might 
interpret gv as playing the role of # for the atoms Nv. 

From equations (17a), (22), (24), and (25) we have 

6 E = k T ( S N v T + 6 N R ~ + ~ f N j ~ j x )  J (28) 

This expression for 6E must be identical to either (26) or (27). Mathemat- 
ically, of course, any linear combination of the two expressions (26) and 
(27) could be made identical to (28). That would, however, leave the 
Lagrange multipliers undetermined. 

In the previous section we found that the microscopic a priori condi- 
tions suggested the distribution (15), i.e., Nj =NRPj, for the radiative 
atoms. Together with equation (19) this implies that the constraints (17a) 
and (18a) are equivalent. All this leads to the conclusion that equation (28) 
must be identical to equation (26). Thus the multiplier x is zero and 

kT 

gv 
~ = ~-T 
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From equation (24) we then get 

Nj = P i N e - e / k r =  PjNR (29) 

N v  = N e - e v / k r =  N(1 -- e-e/kr) (30) 

where the second equal signs follow from using equations (5)-(7). 
Using equation (19), we have 

NRg = E ~,Ny = E P,~jNR 
J J 

with the last step following from (29). 
We thus have 

= h +  (31) 
J 

i.e., g is equal to the arithmetic mean of the values of all discrete energy 
levels each counted as many times as degeneracy implies. Since usually a 
very large part of the levels are close to the ionization level of an atom, 
may in practice be well approximated by the value of the ionization energy. 

Returning to (30), we find 

ev = e - k T  ln(e e/kT - 1) (32) 

which may be interpreted as stating that the average Coulomb interaction 
energy is - k T  ln[exp(g/kT) - 1]. In concluding this section we may state 
that with our present formulation of the thermodynamics we have obtained 
complete consistency with the microscopic a priori constraints imposed by 
the Coulomb forces and the radiative interaction. 

6. INTENSITY OF SPECTRAL EMISSION LINES 

Suppose the average probability per unit time for one atom in our 
sample of making a radiative transition between the discrete states [/) and 
Ik> is akj. This is in principle a mean value of the microscopic a priori 
transition rate that was denoted by Pkj in Section 4. We have 

PjAky = PkAjk (33) 

When ~j > ~k the transition j ~ k will be accompanied by the emission of a 
photon hvjk, 

hvjk = 81 -- ~k (34) 

If the average number of atoms on the energy level ~j is Nj one would 
expect the total average number of jumps j---, k per unit time to be simply 
NjAkj, i.e., the accompanying rate of energy emission I~k would be 

I~k = hvj~NjAkj (35) 
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The emission formula (35) is based on the assumption that the action of 
the macroscopic system is simply the sum of the actions of the microscopic 
subsystems. This is almost certainly valid when there are no macroscopic 
constraints governing the physical system. When there are such constraints 
we must determine by probability analysis the most probable way of 
macroscopic action which is consistent with the a priori microscopic 
constraints. In doing so we extend Boltzmann's fundamental maxLrnum 
probability principle: The development of a macroscopic physical system 
almost always occurs in the most probable of all conceivable ways consis- 
tent with the constraining conditions for the system. The words "almost 
always" express that there are very small nonzero probabilities of odd 
events happening in nature. 

The importance of taking macroscopic constraints into consider- 
ation may be illustrated by the following imagined shooting experiment. 
Suppose a marksman practicing rifle-shooting at a standard target at a 
certain range hits the target with 50% of his shots--the average result 
of ten shots thus being five bullet holes in the target. Now suppose 
ten marksmen of this very same shooting skill simultaneously fire one 
shot each at a common single target. What will the average number of 
target hits be of such collective rounds of ten shots? The correct answer 
is not the number five. The number must be smaller than five because 
now each bullet competes with nine others in its flight toward the target. 
The caliber of the bullets determines a constraint at the collective 
shooting which is absent at the individual shooting. When firing the 
shots one by one the holes in the target can overlap, while the holes 
from bullets arriving simultaneously at the target cannot overlap. At the 
collective shooting rounds the whole target area is not accessible to a 
bullet. 

This experiment might be considered a parabolic description of 
our physical problem. The counting of bullet holes corresponds to our 
counting of emitted photons. Answering the shooting quiz by the number 
five is equivalent to writing the formula (35) for photons emitted from 
the spectral sample. Completion of the parabolic interpretation could 
imply that the constraint of a fixed rate of energy emission from the 
sample would yield a formula predicting a rate of emission differing from 
(35). We shall see that this is indeed the result of the following probability 
analysis. 

Let us consider the energy levels ej with average numbers Nj of atoms. 
Atoms jumping away from a level are constantly replaced by atoms 
jumping to this level. In this way the numbers N i are fixed in our steadily 
shining sample. Every single jump from sj may thus be considered being 
made by one atom out of Nj atoms. 
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Suppose the number of downgoing transitions j ~ k is Nkj in the time 
interval At. Assuming that these transitions occur independently, we find 
that the probability of this event is proportional to Qkj given by 

akj = (NjAkj At)Nkj (36) 

This transition probability might appear strange since it depends on a 
power of At instead of the accustomed linear dependence. To avoid 
possible confusion on this point one must bear in mind that Qkj is the 
probability for exactly Nkj transitions in time At. 

The probability for all transitions {Ark+-} during At will be 
J 

Q =  f i  l--[ Qkj (37) 
j = l k = l  

where n denotes the highest energy level. 
If the rate of energy emission is W, the energy emitted by the atoms in 

time At is 

WAt= ~, ~ Nkj(~j--Sk) (38) 
j = 2 k = l  

We shall now determine the values of Nkj yielding the most probable 
transition pattern compatible with a fixed rate of energy emission. 

We have from (37) and (36) 

lna = E lnakj = E Nkj In NjAkj At 
j>k j>k Nkj/e 

from which we obtain 

alnQ = Z 6Nkj In NjAkj At (39) 
j > k N k j  

A maximum of Q is attained when 51nQ = 0. With no constraining 
condition for the variations 6Nkj we would thus by (39) have this maximum 
when Nkj = NjAkjAt, which is the emission formula (35). In our approach, 
however, the constraint 6(WAt)=0 must be satisfied together with 
61nQ = O. 

By (38) and (39) we thus seek a solution {Nkj} of the equation 
61nQ = 0, i.e., 

�9 N j & j  At  
y ,  a N ,  j m  - -  - 0  

j > k N k j  

with the variations 6Nkj subject to 

E a N k g +  - -  = 0 
j > k  
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The sought solution is 

Nkj = At NjAkj e -a(~J - ~k) (40) 

where fl is a Lagrange multiplier. Inserting expression (40) for Nkj into 
equation (39) yields 

61nQ =fl  ~ 5Nkj ( s j - - sk )=f l  E 5Nk+hvjk (41) 
j>k  j>k  

valid for arbitrary 6Nkj. If we assume that entropy Sp can be related to the 
photons with total energy ~ Nkjhvjk and temperature Tp we have 

6Sp = 1 E 5Nk/hvjk (42) 
Tpj> k 

The photon distribution {Nkj } given by (40) was obtained by determining 
the maximum of the probability function Q. By Boltzmann's fundamental 
principle this suggests the relation 

6Sp = k 51nQ 

Comparison with (41) and (42) leads to 

1 
fl = k--~p (43)  

Suppose we consider the variation expressed by (42) being a reversible 
fluctuation from the stationary state of the sample. The entropy of the 
atoms would then change according to 

as  

with 

Hence 

aN;= E aN,:- E auk, 
j> i  k>i 

5S = 1 ~, 6 N k j ( s k  - -  s j )  (44) 
T j > k  

Since we consider a reversible (adiabatic) fluctuation, the total entropy of 
the {Ni} atoms and the {Nkj} photons must not change. Thus 

aS  "JI- asp ~-- 0 

which is valid according to (42) and (44) if Tp = T. Equation (43) then 
becomes fl = 1/kT and equation (40) yields the photon emission formula 

Nkj = AtNjAkj e -hvjk/kr (45) 
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We recall that our formula (45) is the result of the assumption that the 
transitions are independent. In terms of relativity theory these events of 
transitions have spacelike separation, i.e., no physical signal can connect 
them. We may thus say that out of a total set of transitions Ikj we have 
selected a set of causally unconnected transitions Nkj. Evidently such a 
selection can always be made. 

A well-known mechanism of causal connection is the process of 
stimulated emission. Suppose causal connections between transitions give 
rise to a number Ski of extra transitions besides Nkj- in the time interval At. 
The total number of transitions is then 

Ikj= Ukj + Skj 

The number of ways Rkj for this division of Ikj is 

RkJ \Sk+J \NkjJ--Nk--f(Skj---]. 

(46) 

(47) 

The trivial symmetry of Rkj with respect to Ski and Nkj exhibited in (47) 
proves that the division (46) of Ikj is quite unambiguous. Equation (47) 
expresses that the number of ways for selecting the independent transitions 
equals the number of ways for all arbitrarily dependent extra transitions. 
There is thus no logical possibility for the existence of further extra 
transitions besides Ski. 

From (47) we get by Stirling's rule 

lnRkj = In (Nkj + Ski)! 
Nkj! Skj! 

= (Nkj + Skj) ln(Nkj + Skj) -- Skj lnSkj -- Nkj lnNkj 

Variations 6Skj with 6Nkj = 0 yield 

Nk+~ 61nRkj = 5Sgj In 1 + ~ )  (48) 

The probability of Ski extra transitions besides the transitions Nkj already 
determined by (45) will be proportional to 

R = H Rkj (49) 
j > k  

The maximum probability principle is now applied to R as follows. 
Performing variations 6Ski subject to the constraint of a fixed rate of 
energy emission, 

Z = o 
j > k  
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yields by (48) and (49) the equation 

( +Nkj  
blnR = ~ 5Ski In 1 = 0  

for a maximum of R. We thus obtain from these two equations 

= ( 5 0 )  In 1 + Ski, ] 

The same thermodynamic arguments as were used to obtain the emission 
formula (45) will also now show that the Lagrange multiplier fl equals 
1/kT. 

From equation (50) we obtain 

Sky = e hvyk/kT- 1 

and, after using (45), we finally obtain the formula for total emission 

Ikj = Nkj + Ski = atN~Akj (51) 
e hvjk/kT-  1 

The steady-state condition of equal rates of downgoing and upgoing 
transitions, i.e., Ikj =/jk, implies by (51) 

NkAjk = NjAkj (52) 

By comparing (52) with the standard relation PkAik = PjAkj we find 

Uj Pi 
which is consistent with equation (29); N~ = NRP~. The steady-state condi- 
tion thus provides an alternative way of concluding that the discrete energy 
levels are populated in proportion to their statistical weights. 

Our results from Section 5 [(29) and (31)] together with equation (51) 
of this section may now be summarized in a formula for the intensity of 
optical spectral emission lines in units of energy per unit time: 

I(hVjk ) = BNhvjk PJAkJ e-~/kr 
eh,.jk/kr_ 1 (53) 

where B is a parameter depending on properties of the experimental design. 

7. D I S C U S S I O N  OF P H O T O N  E M I S S I O N  

The a priori number of atomic jumps j --, k is NjAkj At and the actually 
occurring number of jumps is lkj. The ratio lkj/NjAkj At is then the average 
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number of times that each a priori jump occurs in time At. The transition 
probability rate Aki is an average of all possible momentarily and locally 
attained values. This implies that the a priori jumps actually occur various 
numbers of times deviating from the average number Ikj/NjAkj At. Instead 
of an even distribution of actual jumps Ikj over the a priori jumps NjAgj At 
we must then consider all possible distributions. The total number of ways 
of such distributions is 

(NjAkj At -- 1 + Ikj)! (54) 
OkJ = (NjAkj At -- 1)! Ikj! 

This rather tentative reasoning has thus led to the well-known combinato- 
rial Dky for Bose-Einstein particles Ik:. If we neglect -- 1 in (54) and form 
the variational equation for lnD = ~ lnDkj in the usual manner we obtain 

N&J At'x 
61nD = E c~Ikjln I+ ~ l (55) 

j > k  / 

This variation applied to the pertaining emitted photons is described by 

6(mAt)  = ~ 5Ikjhvjk (56) 
j > k  

The maximum of In D at fixed energy emission is obtained when 61riD and 
6(WAr) are both zero. This gives the total emission formula (51) for Ikj. 
We may thus assume that the entropy S(At) of the photons emitted in the 
time interval At is 

S(At) = k lnD (57) 

At entropy maximum we thus have the thermodynamic relation 

5S(At) = 1 6(WAt) (58) 

which by (56) and (57) is equivalent to 

1 
51nD = -s ~> k 5Ik:hvjk (59) 

with 61nD given by (55). With the simplification NjAkj At = Zkj we have 

[ lnD = s>k2 (ZkJ + Ikj) In 1 + ~ ) - Zkj In Zkjikjj] (60) 

With regard to certain experimental results to be discussed in the concluding 
section we shall consider a generalized variation of lnD. Equation (60) yields 

51nD= E fi/J'k In l + i k : j + 6 Z k : l n  1 
:> z,. J_l 
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If Zk/~> Ikj and the values of {6Zkj} are reasonably bounded, we will 
obtain 

61nD = Z 6Ikj In Zkj (61) 
j > k Ikj 

We thus see that this generalized variation of lnD may be expressed in 
variations of the photon numbers Ikj only. Because of this and since the 
definition of photon entropy in equation (57) has not been violated, the 
relation (61) is compatible with (58) and (59). Thus we have 

Z 6Ikj in zkj = 2    jhvj /kT 
j > k  Ikj j > k  

which implies the photon emission formula 

I~j = Zkj e --hvjk/kT (62) 

The condition Zkj ~> Ikj limits the validity of equation (62) to cases where 
hvjk ~> kT. This condition alone yields equation (62) directly from the 
photon emission formula (51). 

The point of our roundabout derivation of formula (62) is the 
suggestion that the formula is valid for quite general atomic distributions 
{Nj }. Our previous assumption of a steady state of the spectral sample was 
not used to derive (62). Hence, this result could apply to samples with 
fluctuations of the number of particles as well as of the external energy 
pumping rate. Our "roundabout" derivation indicates that this presupposes 
properly bounded fluctuations during the photon registration time At so 
that meaningful mean values of the quantities T, Nj, and Akj then exist. All 
this might be summarized bluntly in stating again that photon emission 
"always" occurs in the most probable way. 

8. CONCLUSION 

The present theory of atomic spectral emission was presented in 
outline at the 1984 FACSS meeting (Yngstr6m, 1985). The work was 
initiated by experimental observations which indicated that spectral line 
intensity fluctuations depend strongly on wavelength. These observations 
were made by B. Thelin and were first reported in connection with the 
theoretical presentation in 1984 (Thelin, 1985). 

Thelin's method of fluctuation analysis is used in Thelin (1986a) to 
demonstrate exponential dependence on hv of spectral intensity, and evi- 
dence for such dependence on g + hv is given by Thelin (1987, 1988a,b). In 
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these papers the intensity formula (53) is assumed to be well approximated 
by 

I = C e - (J+ hv)/kT 

with the ionization energy J = g. 
The analysis method is based on study of the fluctuations of spectral 

line intensity ratios obtained from repeated simultaneous measurements of 
various spectral lines. 

Strong evidence for formula (53) was obtained by analyzing tabulated 
data for electric dipole emission lines (Thelin and Yngstrrm, 1986). This 
work is presented in more detail in Yngstr6m and Thelin (1990), where also 
a strict mathematical derivation of Thelin's analysis method is given. A 
recent work (Yngstrrm, 1994) shows very good support for the new 
intensity formula from detection limit data of ionic spectral lines. 

The fluctuation method of analysis has provided evidence for the 
validity of formula (62) in the study of auroral emissions (Thelin, 1986b). 
In these observations the auroral spectral sample is very large and is subject 
to fluctuations in size, electron temperature, and external energy input. 
Arguments for the validity of formula (62) in such a turbulent case were 
discussed in Section 7. We may once again discuss this and consider the 
result of variation of 

I = Z e - (J+ hv)/kT 

by writing 

61 6Z ~ 6 T _  1 
I Z 

From this expression we see that in the case hv , > k T  the quantity 
[(hv/k),~T-1[ ,~ (hv/kT)l,~T/T I might be the dominating source of relative 
intensity fluctuations, since we may assume that I T/T1 and I, z/zl are of 
equal orders of magnitude. 

Results in Thelin (1988c) from analyses of optical emission data from 
expanding barium clouds released by rockets in the upper atmosphere also 
support the suggestion that the intensity of these emissions depends mainly 
on an exponential function of hv. 

All this experimental evidence supports convincingly the new atomic 
spectral intensity formula. Although the formula is new, the theoretical 
arguments used to obtain it cannot be considered quite new. The theory 
presented here seems to possess much strength since its foundation consists 
of well-known and well-established basic principles of physics. 
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NOTE A D D E D  IN PROOF 

In agreement with the new intensity formula presented in this paper, 
the principle of  maximum entropy for spontaneously emitted radiation 
from material bodies in well-defined thermal states has recently been shown 
(Bekenstein and Schiffer, 1994) to imply that the radiation intensity is a 
fraction of  the Planck radiation intensity. 
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